a) 12x/15 =
b) 12m/6a =
c) 8x /10x² =
d) 4x³/10xy =
e) 4x⁴a/6x³ =
f) 6a⁵/7a³x =
g) 8ay/2xy³ =
h) 4x²y/10xy³ =
i) 8am/-4am =
j) -14x³c/2x =
k) 64a³n²/4an² =
2) Simplifique as frações, admitindo que os denominadores sejam diferentes de zero.
a) (3a – 3b) / 12 =
b) (2x + 4y) /2a =
c) (3x – 3) / (4x – 4) =
d) (3x – 3) / ( 3x + 6) =
e) (5x + 10) / 5x =
f) (8x – 8y) / (10x – 10y) =
g) (3a + 3b) / 6a + 6b) =
h) ( 15x² + 5x) / 5x =
i) (6x – 6y) / (3x – 3y) =
j) (18x – 18) / (15x – 15) =
k) (x² - x) / (x – 1) =
l) (2x + 2y) / 6 =
3) Simplifique as frações admitindo que os denominadores sejam diferentes de zero
a) (x² - 4) / (x – 2) =
b) (a² - 9) / 5(a + 3) =
c) (4x² - y²) / ( 2x – y) =
d) (a + b)⁵ / (a + b)² =
e) ( a – b)² / ( a² - b²) =
f) (x + y)² / ( x² - y²) =
g) (x² - 2x + 1) / (x² - 1) =
h) ( a + 1) / (a² + 2 a + 1) =
i) (x² + 6x + 9) / (2x + 6) =
4) Efetue as operações indicadas:
a) (5x/7y) + (3x/7y) =
b) (3x/7y) – (x/7y) =
c) (5/9x) – (1/9x) =
d) (4x/7y) – (x/7y) =
e) (2x/y) – (8x/y) =
f) (5x/3m)+ (2x-9/3m) =
g) (5x/8m) – (x-4 /8m) =
h) (a / y – x) + ( a / y – x) =
i) (x – 5/ x² - 1) + ( 5 / x² -1) =
j) (3x² x / 2y + 1) – ( x² - 2x / 2y + 1) =
5) Efetue as operações indicadas:
a) (8x /a + x/a + 2x/a) =
b) 7y/a – 2y/a + 4y/a =
c) (2x – 3y / 3m) + (3x + 4y / 3m) =
d) ( x + y /x – 6) – ( 5x – 2y / x – 6) =
6) Calcule os quocientes
a) 2a/ b : x/y =
b) 3x/4 : 5y/7 =
c) x/2 : ax/8 =
d) 5x/a : a/ xy =
e) 3x/2 : 6x²/4 =
f) 2y/x : 10x/3y=
g) 2a / 3x² : 5a² / 9xy =
h) 3a /4m² : 9m²/16a =
7) Calcule os quocientes:
a) (x + 1) /5x : a / (x -1) =
b) (am/(x + y) : m / ( x + y) =
c) ( x² - 1) / (5x + 5) : ( 5x – 5)/ (x + 1) =
d) ( a – b) / a : ( 3a – 3b) / 5 a =
8) Efetue:
a) 1/x : 5 a/x =
b) x/2 : 5x²/8 =
c) 6x : 3x/4 =
d) x²/y : x/y³ =
e) x⁵/y³ : x²/y⁸ =
f) 2x³/ y² : 4x / y⁵ =
Nenhum comentário:
Postar um comentário